
Fast Memory-Efficient Anomaly Detection in Streaming Heterogenous Graphs

Thanks to support from

Code and data at
bit.ly/streamspot
emanzoor@cs.stonybrook.edu

Typed event stream as
dynamic heterogenous
graphs

Typed Edge Stream

p f

t

w

k

p s

f

w

r

G1

G2
Dynamic Heterogenous Graphs

Node types
(p)rocess
(t)hread
(f)ile
(s)ocket

Edge types
for(k)
(r)ead
(w)rite

Dynamic heterogenous graphs as vectors by shingling

Shingle Universe S
 Large!
 Unknown!G2

G1

Shingle Vectors

1 0

10

OkBFT Ordered k-hop Breadth-first Traversal

T
IM

E

p

p

p

p

f

s

t

f

G1

G2

G1

G2

k

r

w

w

Shingle from p = pwfkt

p f

t

w

k

G1

-hop

p s

f

w

r

G2
Shingle from p = pwsrf pw

fk
t

pw
sr

f

Streaming pairwise graph similarity with STREAMHASH

Why does SIMHASH fail?

2 1 0 0 1 1 0G

L |S|-sized random vectors

+3

-1

-1

L bit sketch and
signed random
projection

L dot-products

But S is unknown!

Why cache when you can hash?

L hash functions drawn from a
strongly-universal hash family

 Each needs a constant number
 of 32/64-bit random numbers

 Sketches are computed
 incrementally
 Knowing S not required

10

30

50

70
Sketch Update

Cluster Update

Graph Update

Shingle Construction

1000 100 10
Sketch Size (bits)

0.5

1.0

R
u

n
ti

m
e
 (

m
ic

ro
se

co
n

d
s)

0 50 100 500 1000 1500 3000
Per-edge Sketch Update Time (us)

0

2

4

6

8

10

12

14

F
re

q
u

e
n

cy
 (

m
il
li
o
n

s
o
f

e
d

g
e
s)

L = 100 100,000 edges/s

+1 +1 -1 -1 +1 -1 -1R1

+1 -1 +1 +1 -1 -1 +1R2

-1 +1 -1 +1 -1 +1 -1R3

+1

-1

-1

Probability [D1 and D2
 on the same
 side of R]

 ~ cosine(D1,D2) Incremental sketch construction

+3

-1

-1

+1

-1

-1

Old
projection
vector

Add/remove shingle s in constant time

+/- StreamHash
update vector =

New
projection
vector

+4

0

-2

+1

+1

-1

hi(s1)

+1 -1 ... -1

hi(s2) hi(s|S|)
hi(s): s {+1, -1}
Store h1 ... hL

 in constant space

+1

+1

-1

h1(s)
h2(s)
h3(s)

Accuracy

Offline

L = 1000

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Static StreamSpot

iForest

Online

GFC (c) ALL

erent instants of the stream for all datasets (L = 1000).

(a) L = 100 (b) L = 10

Figure 11: Performance of StreamSpot on for

GFC (c) ALL

erent instants of the stream for all datasets (L = 1000).

(a) L = 100 (b) L = 10L = 100 L = 10

StreamSpot tracks
anomalous heterogenous
graph objects as they
evolve from a stream of
typed edges.

Space

~240MB with N = 12.5M, L = 1000 bits

Time

Applications
Detecting malicious software from
a stream of system call logs

Detecting malicious users from a
stream of filesystem navigation traces

Challenges
Bounded-space graph representation
Streaming graph comparision

Fast and constant-time per-edge

Accurate anomaly scoring

proc
10639

<100, fork>

APP 1

proc
10640

<200, execve> file
/bin/sh

<400, stat>
mem
0xbfc5598

proc
10650

<300, read>
APP 2

file
stdin

proc
10660

<500, read> sock
0.0.0.0

/streamspot

<100>

USER 1

/streamspot/paper

/streamspot/data

/streamspot/code
<200>

<400>

/streamspot
<300>

USER 2

/streamspot/code

/streamspot/data
<500>

Clustering-based anomaly detection
K Bootstrap Clusters
 From benign training graphs
Cluster Centroid
 Average graph of the cluster

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

Cluster Radius
3 standard-deviations
from the mean graph
to centroid distance

Anomaly Score
Distance to nearest
cluster centroid

Anomaly Ranking
Malicious Benign

Pr
ec

is
io

n

r=1/2 r=2/2 Recall

p=0.4

p=1.0

Emaad Manzoor* Sadegh M. Milajerdi Leman Akoglu

