
Fast Memory-Efficient Anomaly Detection in Streaming Heterogenous Graphs

Thanks to support from

Code and data at
bit.ly/streamspot
emanzoor@cs.stonybrook.edu

Typed event stream as
dynamic heterogenous
graphs
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Dynamic heterogenous graphs as vectors by shingling
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Shingle from p = pwfkt
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Streaming pairwise graph similarity with STREAMHASH

Why does SIMHASH fail?
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L bit sketch and
signed random
projection

L dot-products

But S is unknown!

Why cache when you can hash?

L hash functions drawn from a
strongly-universal hash family

 Each needs a constant number
 of 32/64-bit random numbers

 Sketches are computed
 incrementally
 Knowing S not required
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L = 100  100,000 edges/s
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StreamSpot tracks
anomalous heterogenous
graph objects as they
evolve from a stream of
typed edges.

Space

~240MB with N = 12.5M, L = 1000 bits

Time

Applications
Detecting malicious software from
a stream of system call logs

Detecting malicious users from a
stream of filesystem navigation traces

Challenges
Bounded-space graph representation
Streaming graph comparision

Fast and constant-time per-edge

Accurate anomaly scoring
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Clustering-based anomaly detection
K Bootstrap Clusters
 From benign training graphs
Cluster Centroid
 Average graph of the cluster

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

Cluster Radius
3 standard-deviations
from the mean graph
to centroid distance 

Anomaly Score
Distance to nearest
cluster centroid 
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